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Impurity modes from impurity clusters in photonic band 
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Abstract. A Green function calculation for the impurity modes of single impurities and clusters 
of impurities in a photonic band SBUcNre is given. Specifically. a tNncated two-dimensional 
periodic dielectric medium composed from a Square lattice array of dielectric rods placed 
perpendicularly between two parallel perfectly conducting plates is studied. Impurities are 
introduced into this system substitutionally by replacing one (single impurity case) or a number 
(cluster impurity case) of the rods in  the periodic system by impurity rads. Exact expressions for 
the impurity mode frequencies are obtained in terms of Ihe Green functions of the pure system. 
These expressions are then evduated for the case of impurities with small cross-sectionzl areas 
using numerically determined Green functions. Linear frequency-independent. linear frequency- 
dependent and non-linear impurity dielectric media are treated. 

1. Introduction 

Recently there has been much interest in the study of electromagnetic bands associated 
with the propagation of electromagnetic waves in periodic dielectric media [I-SI. A 
number of papers on the computation of such photonic band structures have appeared, 
dealing with waves propagating in 3D, 2D and ID periodic dielectric arrays. While 
early computations only treated media formed from frequency-independent materials with 
positive dielectric constants [I-71, more recent efforts have addressed systems of frequency- 
dependent dielectric materials that can exhibit negative dielectric constants [S, 91. 

The original interest in  photonic band structures arose from their possible use in 
suppressing spontaneous atomic emissions, which often are a mechanism of energy loss 
in solid-state and laser systems [6]. More recent interest in photonic band structures has 
centred on the use of impurity modes in these systems to develop new types of lasers [6, IO]. 
A number of papers have appeared on the computation of impurity levels in 3D, 2D and 1D 
systems [lo-141. These works generally regard the computation for single size or dielectric 
impurities in otherwise periodic media. All the systems considered of which we are aware 
have dealt solely with linear frequency-independent dielechic media. 

In this paper we consider the Green function computation of impurity levels in a 2D 
truncated photonic band structure [15,16]. Specifically, a periodic may of dielectric rods 
with circular cross sections is bounded between two parallel perfectly conducting plates that 
cut the rods perpendicular to their axes. This is then the model for a periodic array in a 
waveguide. A single impurity rod or cluster of impurity rods is introduced substitutionally 
into the system ,and an exact expression for the impruity mode frequencies is' obtained in 
terms of Green functions for the pure system. The impurity mode frequencies as functions of 
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the parameters characterizing the impurity are then obtained using numerically determined 
values of the Green functions. In these considerations linear frequency-independent, linear 
frequency-dependent and non-linear dielectric impurities will be treated. 

The Green function techniques that we use are quite standard [17-211. These methods 
have been previously applied first in the study of impurity modes in electron conduction 
and lattice vibration systems, and more recently to the study of single magnetic impurities 
in magnetic systems. The generalization to treat impurity levels in photonic systems is 
straightforward. 

The order of this paper is as follows. In section 2, we discuss the Green function 
solution of our impurity model and obtain an exact equation, the solutions of which yield 
the impurity frequency modes. In section 3 we discuss the numerical evaluation of our 
equation for the impurity frequency modes. In section 4, our conclusions &e given. 

H G Algul et ul 

x,=o 

Figure 1. The waveguide configuration. 

2. Green function theory 

The system we consider (see figure 1) consists of an infinite square lattice array of parallel 
dielectric rods characterized by a dielectric constant E,, embedded in a background medium 
whose dielectric constant is 6b. The rods will be of circular cross section with radius 
R and the lattice constant of the square lattice is a,  with a z 2R. The resulting spatially 
inhomogeneous dielectric mediilm fills the region between two parallel perfectly conducting 
plates at x) = 0 and x3 = d such that the parallel plates are perpendicular to the axes of the 
rods 1151. (The rods are then periodically arrayed in the x lxz  plane such that the axes of 
the rods occur at ( X I ,  x2) = (nu, mu), where n and m are integers.) An impurity is added 
substitutionally to this system by changing one or a cluster of rods in the system [ll]. 
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In the absence of an impurity, the modes of the parallel-plate waveguide system were 
solved for in 1151. In [151 it was shown that for 

E(r; t )  = E(rlo) exp(-iot) (1) 

one obtains 



E O ( Z I I )  is the position-dependent dielectric constant in the periodic system; and &(q) 
is the change in the position-dependent dielectric constant, from that of the pure system, 
resulting from the addition of impurities. (We shall assume in the following that &(q) is 
independent of x3.) A formal solution for E in equation (5) can be easily expressed in terms 
of the electromagnetic modes of the waveguide in the absence of impurities. This solution 
follows from the orthonormality properties of the waveguide modes, which we shall now 
discuss. 

If Sc(q) = 0 in (3, then 

eo(Zn)LE = ( O ~ / C ~ ) ~ O ( +  (8) 

defines a Sturm-Liouville eigenvalue problem for the Hermitian operator eo(zll)L. The 
eigenvectors E(&J) of equation (8) can be labelled as states of kll in the first Brillouin 
zone, r labelling the frequency band of the eigenvalue, and mode index n corresponding to 
the n in the arguments of the sine and cosine functions in (Z), i.e. 

exp[i(kll+ GII) . q l .  (9) 
i- GI) cos[(nii/d)xp] 

In equation (9) 

+ G:~$)*(~II + Gli)a$)(kn + G;I)1 (10) 

where ?(GIl -GI[) is the Fourier transform in X I ,  of G&), and 02 /c2  = is the eigenvalue 
comsponding to the eigenvectors af:)(kll +GI[), a$)(kll +GI[). a$)(kll + GII) determined 
from equation (3). From equation (8) it then follows that the (E$i(z/o)) are orthonormal 
such that 

/ d3X ~o(~I~)E$:E$~ = (2n)28(k~~ - qn)b.,&.,. (11) 

The electric field E in equation (5) can be expressed in terms of the orthonormal set 
(E$) in equation (9) so that 
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and substitution into equation (5)  yields 

From equations (12) and (13) we find that 

where 

is the 3 x 3 mahix Green function. The impurity modes of the system are found as solutions 
of (14). 

From equations (14) and (15) we see that for 6 s ( q )  independent of q between the 
perfectly conducting plates, the impurity modes continue to be states of the n = 0,1,2, . . . 
waveguide mode indices. The index n remains a good label of the eigenmodes in the impure 
waveguide so that the band structures of each of the n = 0,1,  . . . modes can be studied 
separately and a determination of the impurity levels in the band of each mode can be made. 
For SG(X) dependent on xg, this simplification does not occur and the impurity mixes states 
of different n. 

We shall now discuss the solution of equation (14) separately for modes of n = 0 and 
1 for a number of interesting types of impurities. This will be followed in section 3 by the 
presentation of results of the numerical evaluation of equation (14) for these impurity types. 

2.1. Cluster impurities 

Let us consider introducing a cluster of cylindrical impurities of the form 

84111) = 8 d q )  + 6so(zll - a*d + S ~ o ( z l l  + a21) + 6~0(q -a&) + 6~0(q +a&) 

(16) 

where 

for r < a@ 

otherwise. 
&(T) = {io) 

This cluster transforms about zl = 0 under the same point group as that of the square 
lattice [Zl], and hence simple expressions for the impurity modes can be obtained using 
group theory methods. 

Substituting equation (16) into equation (14) we find for lql < r < a  
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U =  

where E(X) is a 15-component vector of the form 

E ~ ( z ) = E ; ( z )  i = l , 2 , 3  

~ j ( z )  = Ej-?(z  + a & )  i = 4 , 5 , 6  

i = 7,8,9 E ( ( % )  = E(-& - n51) 
f i (x )=Ej -g ( z+a&)  i = l O , I I , 1 2  

€ j ( ~ )  = Ei-iz(2 - U & )  i = 13,14,15 

1 0  0 0 0 
0 (1/2)1 ( l /f i) l  0 (1/2)1 
0 (1/2)1 -( l / f i ) l  0 (1/2)1 
0 0 ( 1 / 4 1  -(1/2)1 
0 (1/2)1 0 -(l/&)l -(1/2)1 

and 

where 

The impurity modes of this system are obtained as the solutions of 

1 d3x’[8(z - z’) - ( o / ~ ) ~ ~ ~ o ~ z ~ ~ ) G ( z 1 z ’ ) l f ( ~ ’ )  = 0 (22) 

where 

The matrix i n t e p n d  in equation (22) can be put into block diagonal form by using the 
15 x 15 unitary matrix [21] 
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Gm 2GOl 0 0 0 
2Goi G, 0 0 0 

0 0 G P O  0 
0 0 O G , O  
0 0 O O G d  

We then find 

where 

and the matrix that gives the solvability condition 

S(X - x') - (o/~)*Se(z;~)U+G(all')U (28) 

is block diagonalized into three 3 x 3 matrices and one 6 x 6 matrix. The integral equation 
in (25) can be discretized in z and z', and expressed~as the linear matrix equation 

c(Sij - (w/~)~ojs€o(z,)u'G(z~ Izj)u)u+f(zj) = 0 (2% 
j 

where loj) are the weights used to express /d3x  in terms of a sum, E,. The solvability 
condition is then that the determinant of the matrix in equation (29) vanishes, and the 
frequencies o at which this occurs are the modes of the impurity states. 

If 8~0(zl,) is independent of ~ 3 ,  then (25) can be separated into a set of independent 
equations for each of the n = 0, 1,2,. . . waveguide modes. The indices n = 0, I ,  2, . . . 
remain as good mode indices for the eigenmodes of the impurity system and equation (25) 
can be reduced to an integral only  over^ the XIXZ plane. This greatly simplifies the 
computation for a given n of the impurity modes of the system. 

2.2. Single impurity . . 

For a single impurity ~ E ( z I ~ ) .  = S~o(q), and equation (14) reduces to the 3 x 3 matrix 
equation 

~ ( z )  = (oZ/cz) d3x'S6o(r;)Gm(~l~')E(r') (30) 

E ~ ( z )  = E j ( z )  i = 1,2,3. (31) 

s 
where 

This equation cannot be reduced by group theory considerations but is already in its simplest 
form. Upon discretization, a matrix equation is obtained from (30), which yields the 
solvability condition and the frequencies of the impurity modes of the system. If 8 e o ( q )  
is independent of x?, then multiplying equation (30) by sin[(nn/d)q] and integrating over 
x3 reduces (30) to a set of independent mode equations for n = 0, 1,2, . . . modes. These 
resulting mode equations are easily discretized in the plane 211 and simplify the evaluation 
of the gap modes for each of the given n = 0. 1, . . . waveguide mode indices. 
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2.3. Computation of impurily modes 

The evaluation of equation (25) for clusters and equation (30) for single impurities can be 
further facilitated by considering S60(q)  of the form 

H G Algul et a1 

S~o(z11) = A6oo(zil) (32) 

where 6 o o ( q )  is a general function of zn and A is a constant independent of q, and we 
shall concentrate in the work presented below on results for SCO(X~~) of the form given in 
equation (32). Substituting S E O ( Z U )  from (32) into (25), we obtain the eigenvalue problem 

g(z) = A /"d'x'K(slz')g(z) (33) 

where g ( z )  = u+f(z) ,  K(z ld)  = (oZ/cz)u+~(z~z')u~~(z~l) and A is the eigenvalue. 
Similarly, substituting (32) into (30) yields 

E ( Z )  = A d'x'K(zIz')+z') (34) s 
where K(zjz') = ( o Z / ~ ) C ~ ( z l r ' ) 6 ~ ( s ' ) .  Both equations (33) and (34) are Fredholm 
eigenvalue problems, which yield A as a function of the impurity mode frequency w/c 
and can be easily discretized and solved numerically as matrix eigenvalue problems. In the 
following we shall consider three different forms for coo(zl1): 

~ o o ( q )  = S(z,,) (354  

d z d  = e ~ p ( - l ~ ~ ~ 1 2 / b 2 ) / ( ~ ~ 2 )  (356) 

and 

We shall use these to compute the impurity modes for n = 0 and n = 1 waveguide nodes. 

2.3.1. Delta functionform. A simplification occurs in the evaluation of equations (25) and 
(30) if we assume that 860(q )  = AS(z1). This would comespond to making impurities 
in our system by placing a thin (Rjmpufity -+ 0) cylindrical pin of length d along the axes 
of some of the R > 0 dielectric rods of the periodic system. Once this limiting case is 
understood, it will facilitate the numerical evaluation of (25) and (30) for more general 
sized impurities. We shall consider these more general sized impurities further on in this 
paper and in more detail in a future publication. 

(i) Deltafunction form n = 0 modes. An additional simplification occurs in equation (25) 
for the computation of the n = 0 cluster modes. For this case Et(z lw)  = Ez(zlw) = 0, 
and the 15 and 15 x 15 vector and matrices in (25) are reduced to the 5 and 5 x 5 vector 
and matrices formed from the terms associated with the non-zero Es(xlw). Substituting 
S G & ~ )  = A S ( q )  in our cluster impurity problem (equation (25)) yields for n = 0 
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where 

yk = &[cos(k,a) 4- COS(k,a)]. (40bi 

Equations (36)-(38) then yield the impurity strength A as a function of the impurity mode 
frequency w for modes of s, p and d symmetry, respectively. The Green functions in 
equation (39) are evaluated numerically on the computer. 

In the single impurity n = 0 case, &o(q) = A 8 ( q )  yields from equation (30) a single 
impurity mode at frequency w for A given by 

A = [(~/c)~G,]-’ (41) 

where G,  is defined in (39a). Again G, is evaluated numerically on the computer. 
T h e n  = 0 modes can also be treated for Kerr non-linear impurities. In this case, for both 

cluster and single impurity computations, we take B E O ( Z ! ! )  = AI1 + A.IE3(ril[w)[’16(211). 
Proceeding as above, we find that the single impurity result is given by (41) with A replaced 
by A[1 + A[E3(0lw)[’]. .The intiresting feature of the non-linear results is that the AlEg[’ 
term allows for the impurity mode frequencies to be tuned by varying the electric field 
intensity. The cluster modes for non-linear impurities are not as easy to treat as the single 
impurity case because E3 on the shell sites can differ from E2 at the centre site. As a rough 
approximation one might approximate a solution of the non-linear cluster by replacing A on 
the left-hand sides of (36)-(38) by A[1+ A[E~(O~W)[~] and solving for A as an eigenvalue. 
A more satisfactory treatment would, however, require a self-consistent treatment of the 
impurity problem, which would allow the shell impurities to differ in dielectric constant 
from the centre site impurity. 

(ii) Deltafunctionform n > 0 modes. Substituting S~~(z~,) = AS@) into equation (25) 
for the n > 0 modes we find that A as a function of the impurity mode frequency w can 
be obtained from (33) as the matrix eigenvalue problem 

K(OIO)g(O) = (l/A)g(O) (42) 



456 H G Algul er a1 

for clusters and from (34) as the matrix eigenvalue problem 

K(0lO)dO) = (1/A)@) (43) 

for single impurities. The matrix in (42) is 15 x 15 whereas the matrix in (43) is 3 x 3. 
For a given impurity mode frequency w used to evaluate K in (42) or K in (43). we then 
obtain from equation (42) 15 values of A, which give cluster impurity modes of various 
symmetries at these frequencies, and three values of A from equation (43), which give 
single impurity modes at frequency w. 

2.3.2. Gaussian and step function forms. For these cases, given in (35b) and ( 3 5 ~ ) .  we 
use Hermite and Gaussian quadrature, respectively, to discretize and solve (33) for cluster 
mode and (34) for single impurity mode cases. We shall see below that, as the area of 
the defect in the x l x z  plane increases, for a fixed impurity mode frequency w,  the number 
of eigenvalue solutions for A at w tend to increase. The delta function impurity profile is 
found to give a minimum number of A solutions for a fixed w. For the delta function cases 
A is a single-valued function of w for each distinct symmetry mode. 

3. Numerical evaluation 

In this section we present numerical studies of the n = 0 and n = 1 impurity modes for the 
single impurity and cluster of impurities defined in (32) and (16), respectively. For these 
evaluations we have taken 6~0(q) to be of the form given in (32) and (35) and have looked 
at the three cases given in ( 3 9 ,  i.e. delta function, Gaussian and step function. 

We have taken the parameters used in 1151 to characterize the system in the absence of 
impurities. Specifically, for this system ea = 9, eb = 1 and the filling fraction is f = 0.4488. 
The n = 0 mode solutions are independent of the plate separation, but for the n = 1 mode 
results, which depend on d ,  we have taken a plate separation d ja  = 0.5. Our interest in 
these pure system parameters is that they correspond to those of a system that has recently 
been investigated experimentally. 

In the numerical evaluation of (25) and (30) we have used 377 plane waves for the 
n = 0 results and 137 plane waves for the n = 1 results presented below. These are, 
respectively, the same number of plane waves used to study the system in [15]. In all of 
the results presented below, discretized versions of (25) and (30) were used to solve for A 
as a function of the impurity mode frequency w in terms of a matrix eigenvalue problem 
for 1jA. Results are presented for n = 0 impurity modes in the two lowest band gaps 
(0.248 < wa/2ac < 0.277 and 0.414 ~< waj2ac < 0.468) and for n = 1 impurity modes 
in the lowest band gap (0.00 < wa/Zxc < 0.44). 

In the following we shall first present results for delta function impurities for n = 0 
solutions. These will be followed by results for the Gaussian and step function cases for 
n = 0 solutions. Finally n = 1 solution results will be presented for the delta function 
single impurity case. 

3.1. Delta function form 

We have evaluated (36)-(39) for the cluster impurity and (41) for the single impurity n = 0 
cases. For the cluster impurity case results are presented for two s symmetly modes labelled 
SO and sl, respectively, two degenerate p symmetry modes labelled p, and one d symmetry 
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mode labelled d. The result for the single impurity case is a single mode of s symmetry, 
labelled s. 

In figure 2 we present results in the second lowest band gap 0.414 < wu/2xc < 0.468 
for the SO, sl, p and d symmetry cluster modes. The sl ,  p and d symmetry modes have 
values of A that are positive whereas the SO modes have A that are negative. In all cases the 
absolute value of A is seen to decrease with increasing frequency w. The single impurity 
mode results for this gap are presented in figure 3 and are found to exhibit A values very 
close to those for the p and d symmetry modes in the cluster impurity case. 

0 ’ 4 ~ ~  0.3 o.zLl 0.0 

a 0.2 
4-02 

0.1 

-0.4 

0.0 
0.42 0.43 0.44 0.45 0.48 0.47 0.42 0.43 0.44 0.45 0.46 0.47 

4 ( z w C l  -/(2”=1 

Figure 2. Plot of A verssus impurily mode frequency o in the second band gap far (a)  p and d 
symmetry modes and (b)  SO and S I  symmetry moder. These results are obtained for the form 
given in (350). 

0.1 

Figure 3. Plot of A versus impurity mode frequency 
0.42 0.43 0.44 0.45 0.46 0.47 o in the second band gap for the single site impuriq’. 

The results are obtained for the form given in (35”). 

a~~ ’ ’  

0.0 

uJ(zlc) 

An interesting feature of the single impurity results in figure 3 is that, for a given 
impurity mode frequency w,  there is only one value of A giving a mode at 0. This is 
different from the behaviour of A on w that we shall see below for the Gaussian and step 
function impurities. In general, we find that, as the cross-sectional “a of the impurity 
increases in the x l x z  plane from zero, A becomes a multiple-valued function of impurity 
mode frequency U. For the cluster impurity results in figure 2, again A for the SO, sl, p and 
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d modes are single-valued functions of impurity mode frequencies and these each become 
multiple-valued functions of w as the cross-sectional area of the impurity is increased. 

In figures 4 and 5 we present results in the lowest band gap 0.248 <oa/%rc < 0.277 
for the SO, sl, p and d symmetry cluster modes and the s symmetry single impurity modes. 
Again, the p and d cluster modes exhibit a similar functional dependence of A on w. The 
SO and SI cluster modes and the s single impurity modes, however, both exhibit a rather 
interesting functional dependence of A on w. The s single impurity forms for A exhibit 
an asymptote at which there is an abrupt sign change in A as a function of w, and the SO 
and SI cluster modes exhibit a minimum and maximum, respectively, in the dependence 
of A on o. All of the forms for A (i.e. s, SO, sl ,  p, d), however, exhibit a singlevalued 
dependence on w .  

H G Algul et a1 

0.26 0.27 0.28 

~~~ 

-10 

-15 

-20 
0.25 028 0 2 7  0.28 

u"701 Od(Z"0)  

Figure 4. Plot of A versus impurity mode frequency w in the lowest band gap for (U) cIuster 
impurity modes of p and d symmetry and (b)  cluster impurity mode of SO and SI symmehy. 
These results are obtained for the form given in (3%)). 

U d * d  

Figure 5. Plot of A versus impurity mode frequency 
w in the lowest bmd gap for the single site impurity. 
The results are obtained for the form given in (35.2). 

25 

20 

1 15 

1 

s 
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J s 

4 

B 
+ 10 

3 
5 - 
0 
0 0.5 1 1.5 2 2.5 

Figure 6. Plot of IE(rl. O)l* versus XI for localized single 
impurity modes of frequencies (U)  WU/?AC = 0.465, (b) 
wa/2nc = 0.450 and (c) wa/2nc = 0.435. 

%,/a 
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Equation (14) can be used to determine the electric field in space of the impurity modes. 
In figure 6 we present results for IE(xl, 0)l2 versus X I  for single impurity n = 0 modes. A 
number of impurity mode solutions with different mode frequencies in the second lowest 
band gap are shown. In general, the modes are found to be localized about the site of the 
impurity and the sites of nearest-neighbour rods. The half-width of the central peak about 
the impurity is approximately 0.05a for each frequency. Figure 7 presents similar results 
for IE(xl, 0)l2 versus X I  for single impurity n = 0 mode frequencies in the lowest band 
gap. In these cases we see that IEI2 is small at the impurity site but is still localized in the 
vicinity of the impurity. 

Pigure7. Plotof IE(xi.0)12 VerSuSq forlocalized 
single impurity moder of frequencies (a) wa/2nc = 
0.253 and (b) u / k c  = 0.260. 

3.2. Guussianfunction and stepfuncrion form n = 0 resuits 

We have evaluated the n = 0 impurity modes using the Gaussian form in (35b) with 
b = 0.014. The integral equations in (33) and (34) are discretized in z~ using Hermite 
quadrature and yield matrix eigenvalue problems for the eigenvalues A-'. For the 20 
integral in q we have used 25-point 2D Hermite quadrature, yielding a 25 x 25 mah'ix 
eigenvalue problem with multiple solutions for A at a given impurity mode frequency w. 

In table 1 we present the three smallest values of A for the single impurity n = 0 
mode and the p and d cluster modes for a number of impurity mode frequencies in the 
second lowest frequency gap. In addition, results for the single impurity mode in the lowest 
frequency gap are also presented. In general, we see that one value of A for each of the 
above modes is shifted below the single values of A given in section 3.1 for the delta 
function form. This is not surprising in light of the dependence of lEIZ on XI seen in 
figures 6 and 7 for the delta function form. 

We have also evaluated the n = 0 impurity modes using the step function form in (35c) 
with b = 0.01~. The integral equations in (33) and (34) are discretized using Gaussian 
quadrature and yield matrix eigenvalue problems for the eigenvalue A-!. For the 2D inregal 
in %(I we have used 25-point ZD 'Gaussian quadrature, yielding a 25 x 25 matrix with multiple 
solutions for A at a given impurity mode frequency 0. 

In table 2 we present step function results for the three smallest values of A for the single 
impurity mode, and the p and d cluster modes for a number of impurity mode frequencies 
in the second frequency gap. Additional single impurity mode results are also presented 
for frequencies in the lowest frequency gap. These results are found to be similar to those 
from the Gaussian profile. 
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Table 1. Impurity strength A as a function of o: Gaussian data. 

wn/2ac 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 

E 0.362 0.339 0.318 0.299 0.282 0.265 0.249 0234 
18.0 17.2 16.5 16.0 15.5 15.0 14.6 143 
18.1 17.3 16.6 16.0 15.5 15.0 14.6 14.2 

P 0.375 0.351 0.330 0.310 0.292 0.275 0.259 0.7.44 
17.7 17.0 16.4 15.9 15.4 14.9 145 14.1 
17.8 17.1 16.5 15.9 15.4 15.0 145 14.1 

d 0.357 0.334 0.314 0.296 0.279 0.263 0.248 0.234 
18.7 17.6 16.8 16.2 15.6 15.1 14.7 14.2 
18.9 17.7 16.9 16.2 15.6 15.2 14.7 14.3 

wU/2RC 0.2500 0.2525 0.2550 0.2575 0.2600 0.2625 0.2650 0.2675 

8 -3.62 -14.1 -178.2 5.75 3.90 3.03 2.52 2.17 
45.0 40.8 12.8 43.3 ~ 42.3 41.4 40.5 39.6 
46.2 45.2 44.2 45.3 43.7 42.5 41.5 40.5 

Table 2. Impurity strength A as a function of w: step function data. 

wn/2nc 0.425 0.430 ~ 0.435 0.440 ~ 0.445 0.450 0.455 0.460 

6 0.357 0.334 0.313 0.295 0.278 0.262 0.246 0.232 
25.3 24.1 23.3 W 21.8 21.1 20.6 20.0 
255 24.3 23.4 22.5 21.9 21.1 20.6 20.0 

P 0.369 0.346- 0.325 0.306 0.288 0.271 0.256 0.241 
24.8 23.9 23.2 22.4 21.8 21.1 20.5 20.0 
211.9 24.1 ~ 2 3 . 2  22.4 21.8 21.1 20.5 20.0 

d 0.351 0.330 0.309 0292 0.276 0.261 0.246 0.232 
26.2 24.7 23.7 22.8 2 2 . 0 ' ~ 2 1 . 3  20.6 20.1 
26.5 25.0 23.8 22.9 22.0 21.4 20.8 20.1 

ou/2nc 0.2500 0.2525~ 0.2550 0.2575 0.2600 0.2625 0.2650 0.2675 

S -3.83 -19.4 11.6 5.37 3.71 2.90 2.43 2.10 
63.8 56.3 62.6 61.2 60.0 58.7 57.4 56.1 
65.3 57.4 ~ 6 9 . 0  ~ 63.9 61.8 60.1 58.7 57.3 

3.3. Delta function for n = I results 

We have evaluated the single impurity delta function results for n = 1. The matrix 
eigenvalue problem in (43) yields three values of A for each impurity mode frequency 
o. Results for the lowest n = 1 band gap 0.00 < wa/Zrrc < 0.44 are presented in table 3. 
In general the three A are seen-to be decreasing functions of w and two values of A at 
fixed w are seen to be almost degenerate. The three A solutions at fixed o correspond to 
three modes of different electric field polarizations. 

, ,  

4. Conclusions 

We have used Green function techniques to compute the impurity modes in photonic band 



Impurity modes in photonic band structures 

Table 3. h p u i i y  strength A as a function of 0:. delta function data, 

wa/2nc 0.1 0.18 0.26 0.34 0.42 

13.9 4.16 1.83 0.14 0.25 
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15.0 4.34 , 1.84 0.84 0.25 
15.1 4.38 1.91 1.02 0.58 

structures. Both single impurity and cluster impurity cases were considered, and it is found 
that the numerical computational efforts for single and cluster impurities are the same. 

By treating impurities for which &(q) is of the form 8e&q) = Ac,&ll), we find 
that a matrix eigenvalue problem for l / A  as a function of the impurity mode frequency 
can be developed and solved. Extension to non-linear dielectric impurities can be made 
by taking A = ~ ~ A ( I  + AIE1*) and solving an eigenvalue problem for A.  Extensions to 
frequency-dependent linear dielectric materials in which A is specified by some fixed form 
(i.e. A = ~ ( w ) )  can be solved graphically using the plots of the eigenvalues A as functions 
of w and the plots of 6(w)  as functions of w to find the points where A = ~ ( w ) .  

For the cases studied in this paper we find 

(i) The delta function impurities for n = 0 modes yield single-valued functions in each 
symmetry mode for A as a function of impurity frequency. 

(ii) Impurities with non-zero cross-sectional areas yield multiple-valued functions in 
each symmetry mode for A as a function of impurity frequency. As the cross-sectional 
area of the impurity increases, an increasing number of mode solutions accynulate near the 
lowest-valued A solution in the system. The increased number of A solutions for a fixed 
impurity mode frequency w no doubt is associated with resonance effects due to the finite 
cross-sectional area of the impurity. 

(iii) In general for n = 0, ]AI is seen to be a decreasing function of impurity mode 
frequency. Exceptions to this are the s,  SO and s l  modes found in the lowest band gap of 
the system treated in this paper. For these modes an interesting asymptotic behaviour was 
observed in the case of the s mode in the dependence of A on w,  and the SO and SI  modes 
exhibited a minimum and maximum, respectively, in their dependence of A on w. 

(iv) The values of A for n = 0 gap impurity modes tend to be smaller in gaps occurring 
at high frequencies than in those occurring at low frequencies. 

(v) For II = 1 delta function single impurity modes, A is found to be a decreasing 
function of the impurity mode frequencies and those modes have three solutions of A for 
each impurity frequency corresponding to the possible electric field polarizations. 

Owing to the small cross-sectional areas of the impurities considered in this paper, large 
values of impurity dielectric constants are needed to produce bound states in the gaps. Such 
large values can be found in materials with dielectric resonances. As the cross-sectional 
area of the impurity is found to increase, however, the impurity bound states are found to 
occur,for impurities with smaller dielectric constants. Currently computational efforts are 
under way to extend the results in this paper to treat impurities of greater cross-sectional 
area. 

Finally, we point out that current interest in impurity modes in photonic band structures 
resides in their use as high-Q electromagnetic cavities [6,10]. The mode frequencies of these 
high-Q cavities can be extended to high frequency ranges in which existing superconducting 
cavity technology fails due to energy losses. Aside from their use as high-Q resonators, 
suggestions have been made  for the use of impurity modes in the design of single-mode 
light-emitting diodes (SM-LED) and the possible development of such structures, which would 
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exhibit zero-threshold lasing [6]. (A good summary of these applications is given in the 
conference summary ‘Development and applications of materials exhibiting photonic band 
gaps’ of Bowden et al [22] and the subsequently published papers of the same conference.) 
It is for these reasons that we hope that our methodology, introduced above, will facilitate 
the study of impurity modes in photonic band structures. Aside from the methodology we 
have also exhibited how: (i) optically non-linear impurities can be used to tune resonance 
modes (and possibly tune lasers created from them), and (ii) clusters of impurities can be 
used to create a series of high-Q resonance levels, which can be designed to have veIy 
specific frequency intervals between them. 

Up till now most theoretical efforts on impurity modes in photonic band structures 
have concentrated on 3D systems [6], with some initial efforts on the theoretical [SI and 
experimental 113,231 study of 2D systems. The 2D systems experimentally studied to date 
have dealt only with a limited number of impurity geometries and values of the impurity 
dielectric constant that require considerable computer CPU time to study theoretically (even 
by the methods proposed here) and hence preclude general studies of the dependence of 
mode frequency on the impurity dielectric constants as presented in this paper. We hope 
that the results for the ZD impurity geometries evaluated in this paper will encourage further 
experiments along the lines suggested by our results. 

H G Algul et a1 
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